The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts

The Switch 2 Pro controller’s battery is technically removable, if you can get to it. (Credit: VK’s Channel, YouTube)

For those of us who have worked on SNES and GameCube controllers, we know that these are pretty simple to get into and maintain. However, in the trend of making modern game controllers more complex and less maintainable, Nintendo’s new Switch 2 Pro controller is giving modern Xbox and PlayStation controllers a run for their money in terms of repair complexity. As shown in a teardown by [VK] on YouTube (starting at nine minutes in), the first step is a disappointing removal of the glued-on front plate. After that you are dealing with thin plastic, the typical flimsy ribbon cables and a lot of screws.

The main controller IC on the primary PCB is an ARM-based MediaTek MT3689BCA Bluetooth SoC, which is also used in the Switch 2’s Joy-Cons. The 3.87V, 1070 mAh Li-ion battery is connected to the PCB with a connector, but getting to it during a battery replacement might be a bit of a chore.

More after the break…

Continue reading “The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts”

Nintendo Switch 2 Teardown, Let’s A-Go!

A new console challenger has appeared, and it goes by the name Nintendo Switch 2. The company’s latest iteration of the home console portable hybrid initially showed promise by featuring a large 1080p display, though very little official footage of the handheld existed prior to the device’s global release last week. However, thanks to a teardown video from [TronicsFix], we’ve got a little more insight into the hardware.

The technical specifications of this new console have been speculated on for the last handful of years. We now know NVIDIA is again providing the main silicon in the form of a custom 8x ARM Cortex A78C processor. Keeping the system powered is a 5220 mAh lithium ion battery that according to [TronicsFix] is held in with some seriously strong adhesive.

On the plus side for repairability, the onboard microphone and headphone jack are each attached by their own ribbon cable to the motherboard. The magnetic controller interfaces are also modular in design as they may one day prove to be a point of failure from repeated detachment. Speaking of which, [TronicsFix] also took apart the new version of the Joy-Con controller that ships with the system.

Arguably the biggest pain point for owners of the original Nintendo Switch was the reliability of the analog sticks on the diminutive controllers. There were widespread reports of “stick drift” that caused players to lose control as onscreen avatars would lazily move in one direction without player input. For the Switch 2, the Joy-Con controllers feature roughly the same number of dome switch buttons as well as haptic feedback motors. The analog sticks are larger in size on the outside, but feature the same general wiper/resistor design of the original. Many will cry foul of the continued use of conventional analog stick design in favor of hall effect sensors, but only time will tell if the Nintendo Switch 2 will repeat history.

Continue reading “Nintendo Switch 2 Teardown, Let’s A-Go!”

Soviet Calculator Teardown Reveals Similarities And Differences

Tearing down hardware from different parts of the world can be revealing, showing unique parts, techniques, and tricks employed by engineers living in a very different world from our own. To that end, [msylvain59] has been kind enough to give us a look inside the Elektronika MK-26—a calculator built in the former Soviet Union.

There’s lots of interesting stuff to see from the get-go. The oddball button pad is covered in Cyrillic symbols, quite alien to those of us more accustomed to the Latin character set. It’s also constructed somewhat unlike more familiar models from Western-aligned companies like Casio or Commodore. It also rattles when shaken, which doesn’t inspire confidence. Inside, it’s got old-school brown PCBs without the usual green solder mask, a chunky IC in a weird package, and display is via a power-hungry VFD.

It doesn’t look so totally alien inside; much of the construction is pretty typical of the mid-1970s, wherever you went around the world. The most striking differences are more in the graphics and visual design than anything else.

Ultimately, there are reasons why manufacturers around the world tend to converge on similar techniques. Generally, it’s because it’s more economical or easier to do things a certain way. And yet, we still see regional variances because conditions, technologies, and parts availability varies around the world. This teardown highlights that quite clearly.

If you’re just getting a taste for Soviet hardware teardowns, you’ll love this video diving inside a real Soyuz clock.

Continue reading “Soviet Calculator Teardown Reveals Similarities And Differences”

Camera is seen on the left with an Arduino connected to the right

Look To The Sky With This Simple Plane Tracker

Do you ever get tired of stressing your neck looking for planes in the sky? Worry not! Here is a neat and cheap Arduino/Ras Pi project to keep your neck sore free! [BANK ANGLE] presents a wonderfully simple plane tracking system using an affordable camera and basic microcontrollers.

The bulk of the system relies on a cheap rotating security camera that gets dissected to reveal its internals. Here stepper control wires can be found and connected to the control boards required to allow an Arduino nano to tell the motors when and where to spin. Of course, the camera system doesn’t just look everywhere until it finds a plane, a Raspberry Pi takes in data from local ADS-B data to know where a nearby plane is.

After that, all that’s left is a nifty overlay to make the professional look. Combining all these creates a surprisingly capable system that gives information on the aircraft’s azimuth, elevation, and distance.

If you want to try your hand at making your own version of [BLANK ANGLE]’s tracker, check out his GitHub page. Of course, tracking planes gets boring after a while so why not try tracking something higher with this open-source star tracker?

Continue reading “Look To The Sky With This Simple Plane Tracker”

The Lowly Wall Wart Laid Bare

Getting a look at the internals of a garden variety “wall wart” isn’t the sort of thing that’s likely to excite the average Hackaday reader. You’ve probably cracked one open yourself, and even if you haven’t, you’ve likely got a pretty good idea of what’s inside that sealed up brick of plastic. But sometimes a teardown can be just as much about the journey as it is the end result.

Truth be told, we’re not 100% sure if this teardown from [Brian Dipert] over at EDN was meant as an April Fool’s joke or not. Certainly it was posted on the right day, but the style is close enough to some of his previous work that it’s hard to say. In any event, he’s created a visual feast — never in history has an AC/DC adapter been photographed so completely and tastefully.

An Ode to the Diode

[Brian] even goes so far as to include images of the 2.5 lb sledgehammer and paint scraper that he uses to brutally break open the ultrasonic-welded enclosure. The dichotomy between the thoughtful imagery and the savage way [Brian] breaks the device open only adds to the surreal nature of the piece. Truly, the whole thing seems like it should be part of some avant garde installation in SoHo.

After he’s presented more than 20 images of the exterior of the broken wall wart, [Brian] finally gets to looking at the internals. There’s really not much to look at, there’s a few circuit diagrams and an explanation of the theory behind these unregulated power supplies, and then the write-up comes to a close as abruptly as it started.

So does it raise the simple teardown to an art form? We’re not sure, but we know that we’ll never look at a power adapter in quite the same way again.

Inside A Fake WiFi Repeater

Fake WiFi repeater with a cheap real one behind it. (Credit: Big Clive, YouTube)
Fake WiFi repeater with a cheap real one behind it. (Credit: Big Clive, YouTube)

Over the years we have seen a lot of fake electronics, ranging from fake power saving devices that you plug into an outlet, to fake car ECU optimizers that you stick into the OBD port. These are all similar in that they fake functionality while happily lighting up a LED or two to indicate that they’re doing ‘something’. Less expected here was that we’d be seeing fake WiFi repeaters, but recently [Big Clive] got his hands on one and undertook the arduous task of reverse-engineering it.

The simple cardboard box which it comes in claims that it’s a 2.4 GHz unit that operates at 300 Mbps, which would be quite expected for the price. [Clive] obtained a real working WiFi repeater previously that did boast similar specifications and did indeed work. The dead giveaway that it is a fake are the clearly fake antennae, along with the fact that once you plug it in, no new WiFi network pops up or anything else.

Inside the case – which looks very similar to the genuine repeater – there is just a small PCB attached to the USB connector. On the PCB are a 20 Ohm resistor and a blue LED, which means that the LED is being completely overdriven as well and is likely to die quite rapidly. Considering that a WiFi repeater is supposed to require a setup procedure, it’s possible that these fake repeaters target an audience which does not quite understand what these devices are supposed to do, but they can also catch more informed buyers unaware who thought they were buying some of the cheap real ones. Caveat emptor, indeed.

Continue reading “Inside A Fake WiFi Repeater”

Teardown Of Casio Credit Card-Sized Radio

These days we don’t get too fussed about miniaturized electronics, not when you can put an entire processor and analog circuitry on a chip the size of a grain of sand. Things were quite different back in the 1980s, with the idea of a credit card-sized radio almost preposterous. This didn’t stop the engineers over at Casio from having a go at this and many other nutty ideas, with [Matt] from Techmoan having a go at taking one of these miniaturized marvels apart.

The Casio FM Stereo radio in happier days. (Credit: Techmoan, YouTube)

On the chopping block is the FM stereo device that was featured in a previous episode. Out of the four credit card-sized radios in that video, the one with the rechargeable battery (obviously) had ceased to work, so it was the obvious choice for a teardown. This mostly meant peeling off the glued-on top and bottom, after which the circuitry became visible.

In addition to the battery with a heavily corroded contact, the thin PCB contains a grand total of three ICs in addition to the analog circuitry. These were identified by [Spritetm] as an AM/FM tuner system IC (TA7792), an FM PLL MPX (TA7766AF) and a headphone amplifier (TA7767F), all of them manufactured by Toshiba.

Although [Matt] reckons this was a destructive teardown, we’re looking forward to the repair video where a fresh cell is soldered in and the case glued back together. Continue reading “Teardown Of Casio Credit Card-Sized Radio”